AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: From Unit 6	BC Integration Techniques Free Response Question Review	Date: April 14, 2020

Topic Name	Topic #
Applying Properties of Definite Integrals	6.6
Integrating Using Substitution	6.9
Integrating Functions Using Long Division and Completing the Square	6.10
Integration Using Integration by Parts *	6.11
Using (Nonrepeating) Linear Partial Fractions *	6.12
Evaluating Improper Integrals *	6.13

* Topic is BC Only

BC1: For $0 \le x < 5$, the function f is continuous and differentiable. A portion of the graph of f(x) is obscured by a Tony Record coffee stain. It is known that $\int_0^4 f(x) dx = 8$

and
$$\int_{4}^{3} f(x)dx = -3$$
 and $f(x)$ is linear on the intervals (0,1) and (4,5). For $x \ge 5$,
 $f(x) = \frac{4}{(x-a)^2}$, where *a* is a positive real number.
(a) Find $\int_{0}^{4} 2xf'(x)dx$.

(b) Find
$$\int_{1}^{2} xf(x^2 - 1)dx$$
.

(c) Find
$$\int_0^{\pi/2} \cos(x) f'(\sin(x)) dx.$$

(**d**) It is known that
$$\int_{3}^{\infty} f(x) dx = 9$$
, find the value of *a*.

BC2: Consider the function $g(x) = \frac{h(x)}{(x+2c)(x-c)}$ where *c* is a constant with c < 0.

(a) Find $\int_{4c}^{7c} g(x) dx$ where h(x) = 6c.

(b) Find
$$\int_{1-2c}^{\infty} g(x) dx$$
 in terms of *c* where $h(x) = 6c$.

(c) Find
$$\int_{0}^{-3} g(x) dx$$
 where $h(x) = 2x + c$.

x		1	2	3	4	6	8
f(x)		2	1	?	3	4	3
f'(x))	4	2	1	2	-1	10
g(x)		1	-4	0	0	8	-2

BC3: The function f is twice differentiable with domain $x \ge -10$. It is known that f(x) > 0 for all x values in its domain and has the horizontal asymptote y = 1. The function g is twice differentiable for all values of x.

(a) If
$$\int_{1}^{3} f'(x)g(x)dx = 2\int_{1}^{3} f(x)g'(x)dx$$
, find $\int_{1}^{3} f(x)g'(x)dx$

(b) If
$$\int_{2}^{6} f'(g(x))g'(x)dx = -11$$
, find $f(-4)$.

The problem is restated.

x	1	2	3	4	6	8
f(x)	2	1	?	3	4	3
f'(x)	4	2	1	2	-1	10
g(x)	1	-4	0	0	8	-2

BC3: The function f is twice differentiable with domain $x \ge -10$. It is known that f(x) > 0 for all x values in its domain and has the horizontal asymptote y = 1. The function g is twice differentiable for all values of x.

(c) If
$$\int_{3}^{\infty} \frac{f'(x)}{[f(x)]^2} = 7$$
, find $f(3)$.

(**d**) Find
$$\int_{1}^{2} 2x^2 f''(x^3) dx$$

(**e**) Find
$$\int_{1}^{2} 2x^{3} f''(x^{2}) dx$$

BC4: A portion of the graphs for f and g are shown above where g is linear with x and y intercepts labeled in the figure. The regions bounded by the graph of f(x) and the x axis have areas of 8 and 3 respectively as labeled.

(a) Find
$$\int_a^0 g(x)f'(x)dx$$
 in terms of *a* and *b*.

(b) Find
$$\int_0^{2a} \left[f'\left(\frac{x}{2}\right) - 3 \right] dx$$
 in terms of *a*.

(c) Find $\int_0^{2a} \left[f\left(\frac{x}{2}\right) - 3 \right] dx$ in terms of *a*.

BC5: A portion of the continuous function h(x) is given above on the interval $0 \le x \le 4$.

The function *h* can also be defined by the equation $h(x) = 3 + \int_{2}^{2x} f(t)dt$.

(a) Find $\int_2^6 xf'(x) dx$.

BC 6: The functions *f* and *g* are continuous and differentiable. A portion of the graph of *g* is given above. The areas of the bounded regions R and S are 5 and 2 respectively. The function *f* is defined by $f(x) = \frac{1}{x^2 + k}$ where *k* is constant.

(a) Find $\int xf(x)dx$ in terms of x and k.

(**b**) Let
$$k = 9$$
, find $\int_{\sqrt{3}}^{\infty} f(x) dx$.

(c) Let
$$k = -9$$
, find $\int (5x+3)f(x)dx$.

(**d**) Find
$$\int_{1}^{4} xg'(x)dx$$
.